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Cell membranes

1. What are the functions of cell membranes?

2. What is the current model of membrane
structure?

3. Evidence supporting the fluid mosaic model
4. How appropriate fluidity is maintained



Membrane: organized arrangement of lipids and proteins
that encloses and separates the cell from its surroundings
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Membranes define spaces with distinctive
character and function



Membr'ane Functions
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major functions of membrane proteins

Transport. (left) A protein that spans the membrane
may nrnvide a hvdrnanhilic channel arrnee the
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of these proteins hydrolyze ATP as an energy ssource
to actively pump substances across the membrane.
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4. Signal detection-

conformational change In the protein (receptor) that
relays the message to the inside of the cell.

Figure 7.9 Receptor i



(d) cell-cell recognition. Some glyco-proteins serve as
iAdAantifinatinn tAamnec that Aavra cnAnifinalhg recognized

5. Cell-cell
communication

(€) Intercellular joining. Membrane proteins of adjacent cells
may hook together in various kinds of junctions, such as
gap junctions or tight junctions (see Figure 6.31).

6. Cell-cell
adhesion

()

Attachment to the cytoskeleton and extracellular matrix
(ECM). Microfilaments or other elements of the

cytoskeleton may be bonded to membrane proteins,
1 stabilizes

*1. boundaries =™ i)

intracellular changes (see Figure 6.29).

Figure 7.9




Transport - Lect 10
materials across membranes

Cell Signaling - Lect 11
external signals trigger internal events

- Lects 16-19
Oxidative Phosphor, Photosynthesis
Importance of Membranes in biochemical Rxns



Current Understanding of Membrane
Structue: Fluid Mosaic Model

1972 Singer & Nicholson

Proteins embedded and floating in a sca
of phospholipid:s

Familiar features’ =

Problems ?

Figure 7.3



* Integral Membrane proteins
Span the phospholipid bilayer - usually a-helices

Why do proteins cross membranes as a-helices?

Must present
hydrophobic
surface




Carbohydrate

Phospholipid
bilayer
(7-8 nm)
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Glycocalyx: “sugar coat”

transmembrane  adsorbed

‘ transmembrane
glycoprotein glycoprotein

proteoglycan

ugar unit

Qutside cell

)

) CELLULAR
9 SPACE

Inside cell



* Membrane proteins and lipids

- Are synthesized in the ER and Golgi
apparatus |

Figure 7.10



Membrane ° Integral

profeins ’ Per'ipher'al
+ Lipid-anchored
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(a) Integral (b) Singlepass (¢) Multipass (d)Multi- ~(e) Peripneral (f) Falty acid
monotopic protein protein subunit membrane or prenyl
protein protein protein anchor



Roles of membrane proteins?

EXTRACELLULAR @

A. Transport - channels and pumps

B. Links to structural proteins

C. Receptors - doorbells

D. Enzymes - localized biochemical rxns
E. Energy Generation - utilize gradient



Fluid Mosaic Model
Proteins embedded a
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Evid for Phospholipid
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Gorter & Grendel - Langmuir Tf'oug
Red blood cells had enough lipid to twice cover their surface

Conclude lipid is a bilayer - hydrophilic heads faced
aqueous environment



Evidence for integral membrane proteins:
Freeze-Fracture Electron Microscopy
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Fluid Mosaic Model
predicts:

A. Membranes are fluid: lipids & proteins
move in the plane of the bilayer

B. Proteins and lipids are asymmetrically
distributed in the bilayers




Evidence for protein asymmetry

(a)

) Lactoperoxidase 2
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Evidence for lipid asymmetry?
Cut off head groups off of exposed lipids
Digested them with phospholipase

Intact red blood cells - ) SM, PC
Broken red blood cells Q 2’;',\ Zspc

Results:isolated different types of phospholipids
suggesting lipids were distributed differently
in the inner and out parts of the bilayer

SM, sphingomyelin; PC, phosphatidylcholine;
PE, phosphatidylcholine; PS phosphatidylserine



Mosaic: Lipids are asymmetrically
distributed

ExTracelIular space .

glycolipid

phosphatidylcholine

; Sl igomyelir
EXTRACELLULAR SPACE @ sphingomyelin

cholesterol

mmnmzmmomom 8 giycolipia

\'\\a 1 cholesterol
5.0 phosphatidylinositol
CYTOSOI ® phosphatidylserine

0 phosphatidylethanolamine



Fluid Mosaic Model
predicts:

A. Membranes are fluid: lipids & proteins
move in the plane of the bilayer

B. Proteins and lipids are asymmetrically
distributed in the bilayers
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Movement of membrane phospholipids

1. Rotation abou’r long axis

Later Hff
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3. Flip-flop - rare

<1 time/wk to 1
time/few hrs

Transverse diffusion
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Evidence for lipid fluidity:
Photobleaching

Molecules on a A spot on the surface As labeled molecules Eventually_.the spot
cell suiface are is bleached by an diffuse into the spot, is indistinguishable
labeled with a intense, highly focused the contrast begins from the rest of the

fluorescent dye laser (. e-) to fade cell surtace



Evidence for membrane protein fluidity?
Cell fusion: 1970 D. Frye & M. Edidin
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membrane
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after cell fusion after cell fusion

Figure 7.6 human



Lipids: critical role in maintaining
membrane fluidity

‘Safurated fatty acids  gtiffer
stack nicely

‘Unsaturated fatty acids -
more fluid; double bond
causes kinks

Stacks poorly

More
fluid

Shorter chains - stack poorly:;
More movement

Length & saturation of hydrocarbon
tails affect packing & membrane
fluidity




(b) Membrane fluidity

Figure 7.5 B




Sterols -

affect membrane fluidity
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cholesterol
- At high temperature has a loosening effect
- At low temperature has a stiffening effect

Figure 7.5 (c) Cholesterol within the animal cell membrane



Cholesterol is

common in

animal cells

Paradox:

a) ¥fluidity at high temp. o
b)4fluidity at low tempzese:

(a) Cholesteral in plasma membrane
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Most organisms requlate membrane

fluidity

"Homeoviscous adaptation”

Fish, plants

0-20°C
Polyunsaturated F.A.
Shorter chains
Cholesterol

Mammals, palm trees

30-37°C
Saturated F.A.
Longer chains
cholesterol



Restricting movement of membrane
proteins -> Membrane Domains

(A) Cell cortex
(B) Extracellular matrix
(C) Cell/cell junctions




Tethering of membrane proteins to
the Extracellular Matrix or

The Cytoskeleton
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Summary: Membranes

1. Fluid Mosaic Model: fluid nature & asymmetric distribution
of components

2. Components:
‘Lipids - phospholipids, sterols, glycolipids
*Fluidity

‘Proteins - integral, peripheral, lipid-linked
‘transport, receptors, enzymes, structural support,
electron transport, specialized functional domains

*Carbohydrates - as glycolipids & glycoproteins
external glycocalyx




